Progressive EPR imaging with adaptive projection acquisition
نویسندگان
چکیده
منابع مشابه
Fast EPR Acquisition with Adaptive Heterogeneous Clocking (AHC)
Electron Paramagnetic Resonance Imaging (EPRI) can provide insight into in vivo anatomic and functional imaging of free radicals and paramagnetic molecules and their role in disease in small animal models. However, there is a need to expedite the data acquisition and post-processing to enable new EPRI applications. While previous work has used a fixed-rate master clock to pace all A/D and D/A c...
متن کاملRapid-scan EPR imaging.
In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be o...
متن کاملUniform distribution of projection data for improved reconstruction quality of 4D EPR imaging.
In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstruction in a limited acquisition time is a high priority. It has been shown for the case of 3D EPRI, that a uniform distribution of the projection data generally enhances reconstruction quality. In this work, we have suggested two data acquisition techniques for which the gradient orientations are mor...
متن کاملOntogeny of modulatory inputs to motor networks: early established projection and progressive neurotransmitter acquisition.
Modulatory information plays a key role in the expression and the ontogeny of motor networks. Many developmental studies suggest that the acquisition of adult properties by immature networks involves their progressive innervation by modulatory input neurons. Using the stomatogastric nervous system of the European lobster Homarus gammarus, we show that contrary to this assumption, the known popu...
متن کاملHelium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.
An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnetic Resonance
سال: 2005
ISSN: 1090-7807
DOI: 10.1016/j.jmr.2005.01.019